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ABSTRACT

Early detection of glaucoma is essential to minimizing the risk of visual loss. It has been shown that a good
predictor of glaucoma is the cup-to-disc ratio of the optic nerve head. This paper presents an automated method
to segment the optic disc. Our approach utilizes pixel feature selection to train a feature set to recognize the
region of the disc. Soft pixel classification is used to generate a probability map of the disc. A new cost function
is developed for maximizing the probability of the region within the disc. The segmentation of the image is done
using a novel graph search algorithm capable of detecting the border maximizing the probability of the disc.
The combination of graph search and pixel classification enables us to incorporate large feature sets into the cost
function design, which is critical for segmentation of the optic disc. Our results are validated against a reference
standard of 82 datasets and compared to the manual segmentations of 3 glaucoma fellows.
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1. INTRODUCTION

Glaucoma affects approximately 2-3% of the US population and is the second leading cause of blindness in
the US. The risk of visual field loss due to glaucoma is minimized by early diagnosis and optimal treatment
methods [1]. The optic nerve head is a three-dimensional structure characterized by a peripheral ‘disc’ and a
central depression called the ‘cup’. Certain characteristics of the optic nerve head facilitate early detection of
glaucoma.

Currently, the gold standard for diagnosis and treatment follow-up of glaucoma is optic nerve planimetry [1].
The method determines the extent of the disc and cup through manual evaluation of stereo 2-D retinal images of
the optic nerve head by an ophthalmologist. The technique is time-consuming and tedious and introduces large
variability due to the need for human interpretation [2]. It is clear that an automated, quantitative method is
necessary for analyzing the optic nerve head in stereo photographs.

In this paper, we focus on the segmentation of the optic disc. Current methods, though approaching those
of human experts [3], are influenced by poor image quality and lack well-defined features for use in the segmen-
tation or classification of the disc [3–7]. The algorithms generally encompass three different techniques: pixel
classification, graph search and active contour. The pixel classification [3, 4] tends to yield disjoint regions that
are difficult to use in later processing. Graph search techniques and active contours have difficulty incorporating
a large number of features into the segmentation because they need to be combined in some intelligent way.
Features are generally selected using prior knowledge and is widely considered an art [8]. To formulate the cost
terms in the segmentation the features need to be combined, and this is usually done using a linear combination
which may not be optimal (e.g. it is difficult to compare edge strength with texture) [4]. The selection of features
and their combinations involves many different variables and it can become difficult to generate a robust result.

Techniques exist in level sets and pattern recognition for incorporating statistics into image segmentation.
For example, Paragios et al. analyze the image histogram to generate Gaussian distributions approximating the
different regions of interest [9]. In Bayesian decision theory [10], a priori knowledge about different regions is
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incorporated into the analysis. We investigate the incorporation of different statistics further by attempting to
generate probabilities for the different regions for use in a graph search. We also investigate a scheme for learning
the probabilities based on patterns.

Our algorithm was validated against manual segmentation by three glaucoma experts in 82 datasets from
patients with a diagnosis of glaucoma. We also compare the results to three glaucoma fellows. The theoretical
advantages of the algorithm were proven by experiments.

2. METHODS

The optic disc segmentation is formulated as a region detection problem where the optimal region is described by
the closed set of pixels that maximizes the total probability of belonging to the disc. Computing the probabilities
is done by incorporating a set of low-level image features into a soft classification. The set of features can be
optimized by using feature selection methods to minimize the error in the borders from the reference standard.
The computational feasibility of this approach is accomplished by transforming the region detection to a problem
of computing an optimal closed path in a 2-D geometric graph. The novelty of this method lies in the ability to
automatically optimize the cost function for use in the graph search, as well as the formulation of the problem
in terms of an optimal border detection for segmenting a region-based objective function.

2.1. Preprocessing and Feature Computation

Simple grayscale information can be extracted from the color fundus images, however it has been shown [3] that
different color spaces such as the red-green and blue-yellow color planes can also provide useful information. We
take advantage of this by computing various low-level features (e.g. Gaussians at different scales, edge detectors,
etc) on the different planes, yielding a large set of features that describe the original image.

The vessels tend to negatively influence the position of the segmented border, thus before computing the
features we have incorporated a preprocessing step to remove the vessels from the images. The vessels can be
detected using a simple kNN classifier trained on some small training set [10, 11]. The vessel pixels are then
treated similarly to convolution with a kernel that exceeds the bounds of the image. An invalid pixel is mirrored
(flipped) across the closest N valid pixels, and then replaced by the average of the mirrored pixels. This technique
helps to minimize the effect of the vessels on the computed features, allowing for a more consistent segmentation.

2.2. Probability Maps

The computation of the probability maps is done for a given set of features using soft classification. A feature
set F contains features f1, f2, · · · , fn. Each pixel (i, j) is represented by a feature vector containing the sampled
features f1(i, j), · · · , fn(i, j). These feature vectors can then be input to a kNN classifier to compute the k
nearest neighbors for each pixel. The probability Pc(i, j) for pixel (i, j) in class c ∈ {disc, bg} is calculated as

Pc(i, j) =
nc

k

where nc is the number of nearest neighbors of class c and k is the total number of nearest neighbors. This
approach can provide an approximation of the probability for each pixel based on the nearest neighbors. The
kNN classifier can be trained using known samples where the class is given in the reference standard. Efficient
implementations of approximate kNN classifiers exist, vastly improving the performance of the probability map
computation [12].

2.2.1. Feature Selection

We are interested in optimizing the feature set for use in the graph search. However, the set of possible features
can grow to become unmanageable. Our algorithm uses a one-time feature selection routine to optimize the
feature set for our particular application, the optic disc. This is done using the Sequential Floating Forward
Selection (SFFS) algorithm [13]. This is an efficient, iterative search through the feature space which involves
two loops working against one another to improve the performance at each step. There is an inclusion loop which
performs Sequential Forward Selection (SFS) to try and add the best feature to the set. After the best feature



is added, Sequential Backward Selection (SBS) is run to attempt to remove any feature that may degrade the
performance, thus improving the overall performance of the selected set while reducing its cardinality.

The SFFS requires an error metric to measure the performance of the algorithm at each step. Because
feature set is used to compute probability maps which directly influence the final segmentation it’s logical to try
and optimize the feature set for our application by measuring the performance in terms of the absolute border
positioning errors. The Euclidean distances are calculated from points on the reference standard to points on
the calculated borders, and vice versa. The final metric is then representative of the total error in the dataset.
We calculate distances from and to the reference standard as a method for minimizing the effect that oddly
shaped borders may have on the error. The borders are computed using the segmentation process described in
the following sections.

2.3. Disc Segmentation

The disc segmentation is the core of the algorithm, utilizing the probability maps to provide a segmented
border. Segmentation involves transforming the original probability map Pdisc into polar coordinates, modifying
the closed border segmentation into a min-cost path problem. From the smoothness parameters a graph is
constructed, and the cost function is computed to assign a cost to each vertex within the graph. Finally, the
optimal path is computed and transformed into a 2-D spline representing the final border of the detected region.

2.3.1. Polar Transformation

The original probability map Pdisc is transformed into polar coordinates using a similar algorithm to that
described by Chen, Wang, Wu [14]. A kernel point Q from which the optic disc is unwrapped is determined as
the approximate center of the disc. Q must be within the disc for the transformation to be valid. The optic
disc is sampled from Q radially outward with I rays of radius R and J samples per ray. The result of the
transformation to polar coordinates is a new 2-D image P(i, j) where 0 ≤ i < I and 0 ≤ j < J .

The polar transformation we use is similar to this, however it is possible that a sample could lie within vessel
region which we have removed earlier. To minimize the effect of these regions, each sample is computed from
an average of the values, excluding vessel pixels, along an arc whose endpoints bisect the surrounding two rays.
An example of this is shown in Figure 1. Sample 3, ray 0 and sample 5, ray 0 are generated by averaging across
their respective arcs.
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Figure 1. An example of the polar transform where the samples along each ray are interpolated along arcs between the
rays.



2.3.2. Graph Construction

The unwrapped image P(i, j) can be viewed as a 2-D weighted, directed graph G = (V,E) (see Figure 2) such
that each pixel P(i, j) corresponds to a vertex in V and the edges of E correspond to the connections between
pixels to form a feasible border for the optic disc.

0 1 2 3 4 5

0

1

2

3

4

5

6

7

i

j

p

Figure 2. A 2-smoothness graph con-
structed from the unwrapped image. Path
p represents a possible closed path through
the graph.

Since the boundary is smooth, the segmented borders should be
sufficiently “smooth”, that is, any two adjacent pixels on the border
should not be too far apart. Precisely, a smoothness constraint M
exists in which a vertex V at the point (i, j) is said to have a directed
edge from itself to every point (i + 1, j ± q) where 0 ≤ q ≤ bM/2c and
j − q ≥ 0 and j + q < J .

The cost of a vertex in V is inversely proportional to the likelihood
that it is located on the desired border. These constraints allow us to
build a cost function for the disc and the problem is reduced to tracing
an optimal path pdisc in G, where 0 ≤ pdisc(i) < J for every 0 ≤ i < I.
The optimality of the path is defined with respect to the total cost of
the vertices on it.

2.3.3. Cost Function Design

Our algorithm relies on the ability to maximize the probability of the
detected region which can be seen as maximizing the total probability

Ptotal =
∑

(i,j)∈Rdisc

Pdisc(i, j) +
∑

(i,j)∈Rbg

Pbg(i, j) (1)

where Pdisc,bg are the probabilities of pixel (i, j) belonging to the disc
and background, respectively, and Rdisc,bg are the regions containing
the disc and background, respectively.

The relationship between the unfolded image and the original prob-
ability map lies in the fact that the unfolded image is a sampled version
of the original probabilities with some interpolation to fill the invalid
vessels. The actual content of the unfolded image is still consistent
with the original image, however, allowing us to perform the optimization in polar coordinates. The optimiza-
tion problem can be viewed similarly to Equation 1 in the unfolded graph as minimizing the total cost of the
path pdisc.

The optimal path is computed in polar coordinates where j = 0 represents the center pixel, thus the disc
grows outward as j increases (e.g. in Figure 3 the segmented disc is on the left of the optimal path). This
implies that the cost C(i, j) represents the probability for the entire region j′ ∈ [0, j] on row i. For a vertex (i, j)
representing the region (i,≤ j) we assign a cost C(i, j) to the cost function C where 0 ≤ i < I and 0 ≤ j < J .

C(i, j) =
∑

0≤j′<j

Pdisc(i, j′)− Pbg(i, j′) (2)

Note that it is equivalent to view the total cost as the difference of probabilities within the disc, or the sum of
the probabilities within their respective regions. The computation can be further optimized by realizing that
Pdisc(i, j) + Pbg(i, j) = 1, thus the final cost function is described in Equation 3.

C(i, j) =
∑

0≤j′<j

2Pdisc(i, j′)− 1 (3)

Finally, the the segmentation algorithm is focused on minimizing the cost function, and so it is necessary to
invert the costs which translates to finding the region with the lowest probability of being background.



2.3.4. Optimal Path Computation

The optic disc is a closed border, thus in polar coordinates pdisc(0) = pdisc(I). The Chen, Wang, Wu [14]
algorithm facilitates this fact with an efficient graph search algorithm. The graph search takes advantage of
the fact that two optimal paths starting at two different points, (0, j′) and (0, j′′) (j′ 6= j′′), can be found that
do not cross each other. Following from this property is a divide-and-conquer algorithm in which the optimal
path p0 beginning at the point (0, bJ

2 c) is computed. The graph is then divided into two subgraphs G1 and
G2 along p0 and the algorithm is recursively called on G1 and G2 to find the optimal closed paths p1 and p2

in G1 and G2, respectively. The optimal closed path in G is the path with a minimum cost among p0, p1 and
p2. This divide-and-conquer paradigm yields an improvement of nearly an order of magnitude over previous
algorithms [15]. A dynamic programming algorithm is used to compute the optimal path beginning at a specific
point (0, j). The optimal closed path is then back-traced from the point (I, j) thus beginning and ending at the
same point. In this way, we obtain the optimal path pdisc for the optic disc.

The optimal path, computed in polar coordinates, consists of samples along the final border in the original
image. The final border is calculated by transforming the samples using the inverse of the polar transform, and
then fitting an interpolating 2-D closed spline to the data [16].

3. EXPERIMENTAL METHODS

3.1. Data

Stereo photographs were obtained from 82 patients with a diagnosis of glaucoma. Color slide stereo photographs
centered on the optic disc were acquired using a fixed geometry Nidek 3Dx stereo retinal camera. This camera
takes simultaneous left and right stereo photographs of the optic disc on slide film; after development, the slides
were scanned at 4096 × 4096 pixel resolution, 24 bit color depth, with a Kodak slide scanner (Kodak Inc.,
Rochester, NY).

The Nidek 3Dx camera projects two alignment marks onto the retina that are photographed simultaneously.
Mutual information-based affine registration was used to align the right and left stereo pairs. The image was
then cropped to 512× 512 pixels keeping the optic disc in the center (see Figure 3).

(a) (b)

Figure 3. (a) the right image from a stereo pair. (b) is the same image overlayed with the reference standard. The
border is the boundary of the optic disc.

3.2. Independent Standard

Three ophthalmologists, widely respected glaucoma specialists, carefully marked all pixels of the disc on each of
the left images of the stereo pair. Planimetry of the stereo pairs using a stereo viewer was utilized. The experts
were requested to include blood vessels into their classification of the surrounding tissue; in other words a part
of a vessel surrounded by disc was classified as disc. Two-class reference standards were obtained by a hard
winner-take-all threshold of the three expert classifications. The two classes are disc and background.



3.3. Error Indices and Data Analysis

To objectively compare computer-detected borders against the reference standard, absolute and signed mean
border positioning errors and root-mean-square border positioning errors are computed and expressed in pixels
(1 pixel ≈ 8× 8µm2). Corresponding points are defined as pairs of points where the first point p1 is taken from
the computer-detected border and the second point p2 is the closest point to p1 on the reference standard border
using the Euclidean distance.

As the borders are defined by 2-D splines, the nearest point p2 with respect to p1 can be calculated quickly
using a gradient descent approach [10]. This can be optimized using a combination of Newton’s method with
quadratic minimization [17]. Because of the length of each spline and the possible points in our discrete space, we
achieved comparable results by simply testing a predetermined number of samples (N = 10) along each interval
of the 2-D spline.

A classification accuracy is also reported, reflecting the number of correctly classified pixels. The accuracy is
based on a balanced sampling of the two classes from the reference standard. The accuracy is computed using

Accuracy =
TP + TN

TP + TN + FP + FN

where statistics are collected from the sampled pixels for the number of true positives (TP ), true negatives (TN),
false positives (FP ) and false negatives (FN).

4. RESULTS

We compare our algorithm against the manual segmentations by three glaucoma fellows to provide a realistic
benchmark of current segmentations. Also, we compare the method to standard graph search approaches,
involving costs computed from simple edge features. The three methods we use are

1. Gaussian smoothing (σ = 5.6) of the grayscale intensity followed by Canny edges (r = 8 pixels).

2. Canny edges (r = 8 pixels) of the blue-yellow color plane.

3. Canny edges (r = 16 pixels) of the blue-yellow color plane.

The blue-yellow plane is used because it tends to emphasize the optic disc [3]. These three costs were selected
for performing the best over our feature set, including features computed on the green plane which is much more
widely used.

An expert determined that 5 of the 82 datasets had resulted in a complete failure. The statistics are computed
on the remaining 77 datasets to more accurately display the performance of the algorithm in normal operation.
A numerical comparison of the different methods is in Table 1 along with some example results in Figure 7.

A list of the most significant features can be seen in Figure 4. The features were calculated from a large
pool of features including different scale smoothness operators, edge detectors and first and second order deriva-
tives [18]. Each feature is computed on the intensity, red-green and blue-yellow color planes. The probability
map computed from the selected features is shown along with the final segmentation in Figure 5. Intermediate
results demonstrating the steps of our algorithm are shown in Figure 6.

5. DISCUSSION

This paper presents a novel and superior method to generate a cost function for incorporating region-based
information into a graph search. Utilizing a kNN classifier which can be initialized from a training set, the input
feature vectors are combined in an intelligent way using the soft classification technique to create probability
maps. We have developed a new feature selection scheme to optimize the cost function design for segmenting
closed objects. The kNN classifier enables the use of standard feature selection techniques to optimize the
feature set for the given application in an automated way (e.g. SFFS) [10]. The cost function described in §2.3.3
maximizes the probability of the disc using graph search to find a min-cost shortest path.



Border Distances (pixels)

Method Accuracy Signed Error Absolute Error RMSE

Fellow 1 94.02% -3.14 ± 5.06 4.84 ± 4.22 5.94
Fellow 2 97.39% 1.92 ± 3.55 3.64 ± 2.76 4.02
Fellow 3 95.60% -1.57 ± 3.22 3.77 ± 1.97 3.56

Our Algorithm 93.89% 9.59 ± 8.78 11.27 ± 7.17 12.96

Alt. Method 1 75.35% -15.99 ± 18.91 24.04 ± 10.59 24.67
Alt. Method 2 74.51% -17.02 ± 20.59 25.31 ± 11.80 26.62
Alt. Method 3 78.54% -15.78 ± 24.81 23.02 ± 18.69 29.26

Table 1. Performance results from different segmentation methods. Note that our algorithm performs considerably better
than the standard methods and shows potential in approaching the accuracy of the fellows.

Figure 4. Features selected from the SFFS algorithm. Listed features are calculated on different color planes: DB, RG,
BY (intensity, red-green and blue-yellow, respectively). Top row (left to right): BY - Invariant Gaussian derivative Lww
σ = 5.6, RG - Gabor smoothing σ = 1.0, θ = 0.0◦, φ = 0.0, ω = π, RG - Radial Gaussian derivative σ = 1.4. Bottom
row (left to right): DB - Radial Gaussian derivative σ = 1.4, RG - Gaussian derivative σ = 4.0, BY - Radial Gaussian
derivative σ = 1.4.



Figure 5. Results for selected features. From left to right, the left image of the original stereo pair, the resulting
probability map, the final border and the reference standard. The probability map is computed from the selected features
shown above.

Figure 6. Intermediate results. On the left is the probability map after unfolding into polar coordinates. In the middle
is the cost function, and on the right is the computed border overlayed on the cost function. The images are sampled
with I = 72, J = 128 and a radius of 128 pixels. Note, without loss of generality, the original stereo images are resized to
256× 256.

The segmentation tends to depend on the quality of the classification within the disc. For example, in
Figure 7b, the lower right portion of the border is drawn into the disc because of the poor classification within
that particular area. However, the segmentation provides a good approximate region that can be used for further
processing of the disc such as determining the location of the ‘cup’ [3, 4]. The cupping of the optic nerve head
is an important motivation for our investigations, as it can be helpful in determining the onset of glaucoma in
patients [1]. While the algorithm provides a good approximation, there are 5 complete failures within the dataset
that reduce the accuracy. Even with these difficulties the performance approaches that of the trained fellows.

In the stereo color images of the optic nerve there is poor contrast between the background and the disc. This
problem can be seen clearly in the example results. To reduce the effects of poor contrast in the segmentation
there are some potential methods to investigate. Currently the segmentation is based on features derived from
the left image in the stereo pair. Incorporation of the stereo information present in the images could result in
a better signal to noise ratio and improved contrast. While there are stereo and disparity features [19] within
our feature set, they are not found to be significant using the SFFS feature selection. It is apparent from the
results that segmentation of the disc requires the use of better stereo features. Also, it would be beneficial to
the algorithm to incorporate the general shape of the disc into the segmentation.

The optic disc segmentation is only one application of our general algorithm. The use of feature selection to
optimize a cost function is useful when dealing with objects that do not exhibit strong edge or region character-
istics. The combination of pixel classification and graph search automatically combines the features optimally
depending on the training data. Classification greatly reduces the dependence on determining linear combi-
nations of features which may not be optimal when trying to compare region-based features with edge-based
features.

6. CONCLUSION

A new and innovative algorithm has been developed and validated against clinical data capable of segmenting
the optic disc in stereo retinal images. Pattern classification techniques provide a flexible method for creating a



(a)

(b)

Figure 7. Example results for two different datasets (a) and (b). Top row: (I) the left image of the stereo pair, (II)
the probability map, (III) our segmentation result and (IV) the ground truth. Bottom row: (V) the segmentation from
fellow 3 and (VI - VIII) alternative methods 1, 2, and 3.



cost function in an automated way from the combination of a large set of features. We have also demonstrated
the usefulness of feature selection to greatly improve the results of our method. A region-based cost function
is also created in polar coordinates for maximizing the probability of a region by reformulating it as a border
detection problem. Results are represented as 2-D splines which make further processing steps easier.
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4. M. B. Merickel, X. Wu, M. Sonka, and M. D. Abràmoff, “Optimal segmentation of the optic nerve head
from stereo retinal images,” Proceedings of SPIE Medical Imaging 6143, 2006.

5. F. Mendels, C. Heneghan, P. D. Harper, R. B. Reilly, and J.-P. Thiran, “Extraction of the optic disc
boundary in digital fundus images,” in Proceedings of the 1st Joint BMES/EMBS Conference, p. 1139,
1999.

6. F. Mendels, C. Heneghan, and J. Thiran, “Identification of the optic disk boundary in retinal images using
active contours,” Proceedings of the Irish Machine Vision and Image Processing Conference , pp. 103–115,
1999.

7. J. Lowell, A. Hunter, D. Steel, A. Basu, R. Ryder, and E. Fletcher, “Optic nerve head segmentation,” IEEE
Transactions on Medical Imaging 23(2), pp. 256–264, 2004.

8. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision, Brooks/Cole Pub-
lishing Company, second ed., 1999.

9. N. Paragios and R. Deriche, “Coupled geodesic active regions for image segmentation: A level set approach,”
Proceedings of the European Conference on Computer Vision , pp. 224–240, June 2000.

10. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley-Interscience, second ed., 2001.
11. M. Niemeijer, J. S. Staal, B. van Ginneken, M. Loog, and M. D. Abràmoff, “Comparative study of retinal
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