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ABSTRACT

Early detection of glaucoma is essential to minimizing the risk of visual loss. It has been shown that a good
predictor of glaucoma is the cup-to-disc ratio of the optic nerve head. This paper presents a highly automated
method to segment the ‘rim’ (disc) and ‘cup’ from the optic nerve head in stereo images and calculate the cup-to-
disc ratio. In this approach, the optic nerve head is unwrapped in polar coordinates and represented as a graph.
Utilizing a novel and efficient graph searching technique for determining globally optimal closed-paths and an
intelligent cost function, the rim and the cup are segmented from the stereo images. The results offer a more
intuitive quantitative analysis compared to current planimetry-based techniques because the ophthalmologist
can view the segmented images along with the derived cup-to-disc ratio.
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1. INTRODUCTION

Glaucoma affects approximately 2-3% of the US population and is the second leading cause of blindness in
the US. The risk of visual field loss due to glaucoma is minimized by early diagnosis and optimal treatment
methods [1]. The optic nerve head is a three-dimensional structure characterized by a peripheral ‘rim’ (disc) and
a central depression called the ‘cup’. Certain characteristics of the optic nerve head facilitate early detection of
glaucoma.

Currently, the gold standard for diagnosis and treatment follow-up of glaucoma is optic nerve planimetry [1].
The method determines the extent of the rim and cup through manual evaluation of stereo 2-D retinal images of
the optic nerve head by an ophthalmologist. The technique is time-consuming and tedious and introduces large
variability due to the need for human interpretation [2]. It is clear that an automated, quantitative method is
necessary for analyzing the optic nerve head in stereo photographs.

We attempt to develop an algorithm that is capable of providing intuitive results using stereo data. In this
paper we model the optic nerve head segmentation as a search for optimal closed paths in a weighted directed
graph and develop a new and efficient algorithm for detecting the rim and cup in stereo photographs of the optic
nerve head. We have also developed a method to incorporate a priori pixel classification information of the nerve
head into the cost function which greatly improves the accuracy of the segmentation. The underlying Chen,
Wang, Wu [3] graph algorithm had never been implemented as a computer program or applied to medial image
segmentation problems before.

The algorithm was validated in 101 datasets from patients with a diagnosis of glaucoma. The theoretical
advantages of the algorithm were proven by experiments.

2. METHODS

Our algorithm consists of three key components. First, the optic nerve is transformed to polar coordinates and
modeled as a graph to simply the computation. This reduces the problem to a graph search for two optimal paths,
the rim and the cup. Cost functions are designed for both the rim and the cup, and incorporate information
from different features. The cost functions are then used to compute two optimal closed paths through the
transformed image of the optic nerve using a graph search algorithm developed by Chen, Wang, Wu [3].
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2.1. Problem Modeling

The fundamental approach to segmenting the borders of the rim and cup in the optic nerve is to model the rim
and the cup as two closed borders. The cup is assumed to be inside of the rim. The optic nerve is unwrapped
into polar coordinates using the transformation described by Chen, Wang, Wu [3]. The kernel point Q from
which the optic nerve is unwrapped is determined as the approximate center of the cup. Q must be within the
cup in order for the transformation to be valid. The optic nerve is sampled from Q radially outward with I rays
of radius R and J samples per ray. The result of the transformation to polar coordinates is a new 2-D image
P (i, j) where 0 ≤ i < I and 0 ≤ j < J . An example of the transformation can be seen in Figure 3b.

The transformed image P can be viewed as a 2-D weighted, directed graph G = (V,E) (see Figure 1) such
that each pixel P (i, j) corresponds to a vertex in V and the edges of E correspond to the connections between
pixels to form feasible borders of the rim and the cup.

7

6

5

4

3

2

1

0
0 1 2 3 4 5

p

i

j

Figure 1. A 2-smoothness graph constructed
from the unwrapped image. Path p represents
a possible a closed path through the graph.

Since the rim and cup boundaries are smooth, the segmented
borders should be sufficiently “smooth”, that is, any two adja-
cent pixels on the border should not be too far apart. Precisely,
a smoothness constraint M exists in which a vertex V at the point
(i, j) is said to have a directed edge from itself to every point
(i + 1, j ± q) where 0 ≤ q < M and j − q ≥ 0 and j + q < J .

The cost of a vertex in V is inversely proportional to the likeli-
hood that it is located on the desired border. In this way we define
cost functions for the rim and the cup and the problem is reduced
to tracing two optimal paths prim and pcup in G respectively for the
rim and the cup borders, where 0 ≤ prim(i), pcup(i) < J for every
0 ≤ i < I. The optimality of a path is defined with respect to the
total cost of the vertices on it.

2.2. Cost Function Design

A priori classification is a very significant portion of the informa-
tion incorporated into the cost functions for both the cup and the
rim [4]. In order to utilize the classification information in a smart
way we need to associate some cost with the particular regions. For
both the rim and the cup, the classified image C(x, y) is unwrapped
using the same parameters and kernel point Q as used when trans-
forming the optic nerve head (see §2.1). The classification is done
on a per-pixel basis and thus results in a noisy classification that
is inconsistent and lacks smooth and distinct borders. In order to
create an approximate border for the rim (resp. cup) we transform
the problem into a graph search for an optimal path (border). This
is done by defining a cost function for the classification that is in-
versely proportional to the edge strength of the rim (resp. cup),
where the edges are found using a simple edge detector [5]. We uti-
lize an efficient graph searching algorithm [3] to determine the optimal closed path representing the approximate
edge of the rim (resp. cup) using an appropriate smoothness constraint (M = 2). The determined path is then
smoothed with a Gaussian smoothing operation (σrim = 15.0 and σcup = 9.0) to create an approximate region
brim (resp. bcup) where the rim (resp. cup) might lie. These regions are used as features in the segmentation of
both the rim and the cup.

The rim is more consistent and well-defined than the cup, thus by finding it first we are able to constrain the
space in which the cup may be located. The three features used in the cost function are edge strength e(i, j),
texture t(i, j) and the a priori approximated border brim(i, j). A cost function crim(i, j) is defined for the rim
based on a weighted combination of features.
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crim(i, j) = A · brim(i, j) + B · t(i, j) + C · e(i, j) (1)

The edge strength e is determined using a difference of Gaussians (DoG) [5]. Accounting for noise, we set
σ1 = 3.0 and approximate a Laplacian of Gaussians using the relationship σ2 = 1.6σ1 [6]. The DoG is computed
only along J , across each sampled ray, thus the edge strength is weighted radially on the optic nerve.

Texture information t is computed for the optic nerve on a per-pixel basis such that

t(i, j) = AVGright(i, j)−AVGleft(i, j)

where AVGright(i, j) (resp. AVGleft(i, j)) is defined as the average intensity of a floating window on the right
(resp. left) of the pixel (i, j). This can be viewed as the difference between the smoothness on the right of (i, j)
and the smoothness on the left of the (i, j). It is a simplified version of the analysis used in [7] where the gradient
of the rim is assumed to lie along j.

Features t, e and b are normalized linearly between 0 and 1 in order to combine the features in a meaningful
way. The weighting factors A, B, C utilized in Eq. (1) are determined experimentally using a supervised
optimization process in which different solutions to the problem A + B + C = 1 are tested. The combination
producing the best border positioning errors (see §3.3) was determined to be A = B = C = 1

3 .

Cup segmentation is reduced to determining a smooth path through the a priori classification. However, a
structural requirement of the rim/cup relationship is that the cup must lie within the rim. Thus, using the rim
segmentation prim, we can influence the cost function such that the newly determined path must lie inside prim.
In this way the cost function for the cup can be expressed as

ccup(i, j) =
{

max bcup − bcup(i, j) if prim(i) < j
∞ else (2)

such that the cost is constrained and inversely related to the classification.

2.3. Optimal Path Computation

The rim and the cup are closed borders, thus in polar coordinates prim(0) = prim(I). The Chen, Wang, Wu [3]
algorithm facilitates this fact with a new and efficient graph search algorithm. The graph search takes advantage
of the fact that two optimal paths starting at two different points, (0, j′) and (0, j′′) (j′ 6= j′′), can be found that
do not cross each other. Following from this property is a divide-and-conquer algorithm in which the optimal
path p0 beginning at the point (0, bJ

2 c) is computed. The graph is then divided into two subgraphs G1 and
G2 along p0 and the algorithm is recursively called on G1 and G2 to find the optimal closed paths p1 and p2

in G1 and G2, respectively. The optimal closed path in G is the path with a minimum cost among p0, p1 and
p2. This divide-and-conquer paradigm yields an improvement of nearly an order of magnitude over previous
algorithms [8]. The smoothness constraint is set at M = 2 to produce smooth borders. A dynamic programming
algorithm is used to compute the optimal path beginning at a specific point (0, j). The optimal closed path is
then back-traced from the point (I, j) thus beginning and ending at the same point. In this way, we obtain the
optimal paths prim and pcup for the rim and the cup, respectively.

Once the borders of the rim and cup, prim and pcup respectively, have been determined they can be combined
into the polar image P (i, j). P (i, j) can then be transformed using the inverse of the polar transform discussed
above to obtain the segmented image S(x, y), which is the output of our algorithm.

3. EXPERIMENTAL METHODS

3.1. Data

Stereo photographs were obtained from 101 patients with a diagnosis of glaucoma. Color slide stereo photographs
centered on the optic nerve head were acquired using a fixed geometry Nidek 3Dx stereo retinal camera. This
camera takes simultaneous left and right stereo photographs of the optic disc on slide film; after development,
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the slides were scanned at 4096× 4096 pixel resolution, 24 bit color depth, with a Kodak slide scanner (Kodak
Inc., Rochester, NY). See Figure 2.

The Nidek 3Dx camera projects two alignment marks onto the retina that are photographed simultaneously
with the optic nerve head. Mutual information based affine registration was used to align the right and left
stereo pairs. The image was then cropped to 512× 512 pixels keeping the optic nerve head in the center.

Figure 2. The left image contains the right image from a stereo pair and on the right is the same image overlayed with
the reference standard. The innermost region is the cup, and the outermost border is the boundary of the rim.

3.2. Independent Standard

Three ophthalmologists, widely respected glaucoma specialists, carefully marked all pixels of cup and rim on
each of the left images of the stereo pair. Planimetry of the stereo pairs using a stereo viewer was utilized. The
experts were requested to include blood vessels into their classification of the surrounding tissue; in other words
a part of a vessel surrounded by a cup was classified as cup. Three-class reference standards were obtained by a
hard winner-take-all threshold of the three expert classifications. The three classes are rim, cup and background.

3.3. Error Indices and Data Analysis

To objectively compare computer-detected borders against the reference standards, maximum border positioning
errors, signed mean border positioning errors and root-mean-square border positioning errors will be computed
and expressed in pixels and in micrometers where one pixel is approximately 8× 8 µm2. Corresponding points
will be defined as pairs of points, the first point being from a computer detected border and the second point from
the reference standard border that is closest to each other using the Euclidean distance metric. The positioning
errors will be defined as the minimum distance from each computer-detected border pixel to reference standard.

4. RESULTS

Our algorithm has been implemented and validated using the 101 datasets and a reference standard (see §3).
Average border positioning errors are displayed in Table 1. The average signed distance reflects a tendency to
underestimate the size of the cup and overestimate the size of the rim. Examples of the cost functions for the
rim and the cup can be seen in Figure 3. The output of the algorithm can be seen in Figure 4. Through visual
inspection there is one complete failure in the 101 datasets.

5. DISCUSSION

The benefits of our algorithm can be seen in the flexibility to incorporate different features into the cost functions
and segment the image into two distinct and smooth regions. This is a big advantage over pixel classification
approaches that often cannot guarantee that structural requirements are met. Pixel classification has the advan-
tage of inherent learning approaches such as supervised training [9]. A hybrid approach makes sense in which
our algorithm treats the segmentation as a post-processor to the pixel classification. As a result, our algorithm
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(a)

(b)

(c)

Figure 3. Intermediate examples of the segmentation algorithm. From left to right, (a) contains the original stereo retinal
image, the output of our algorithm, and the reference standard. (b) shows (from left to right) the optic nerve transformed
to polar coordinates (I = 360, J = 256), along with the rim cost function and the cup cost function and the resulting
segmentation where the cup is the leftmost border. (c) shows the intermediate features used in the rim segmentation.
From left to right, they are the classification region, texture information and the edge strength.
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Figure 4. Computer-based segmentation of the optic nerve head. From left to right, left and right stereo color images,
computer segmentation, and reference standard by three glaucoma specialists. Black background, gray rim, and white
cup.
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Table 1. Border Positioning Errors

Cup Rim
Metric pixels µm pixels µm

Signed Distance −0.26± 6.60 −2.08± 52.81 0.03± 5.42 0.21± 43.37
RMS Distance 6.47± 4.98 51.79± 39.87 6.18± 3.95 49.44± 31.58
Max Distance 13.39± 7.52 107.14± 60.16 13.62± 6.89 108.94± 55.14

is highly dependent on the quality of the a priori classification. This dependency can be lessened by the incorpo-
ration of other features into the cost function, however the largest difficulty in the segmentation is dealing with
the quality of the images.

In the stereo color images of the optic nerve there is very poor contrast between the background, the rim and
the cup. This problem can be seen clearly in Figure 2. To reduce the effects of poor contrast in the segmentation
there are some potential methods to investigate. Currently the segmentation is based on the right image in the
stereo pair. Incorporation of the stereo information present in the images could result in a better signal to noise
ratio and improved contrast. Also, the current texture information is simple and can be improved using new
minimum-variance cost functions proposed by Chan and Vese [10] which are more sensitive to small changes in
texture. The benefits of such texture information can be readily seen in [11].

A feature that has not been investigated is the elliptic structure inherent in both the rim and the cup. This
information could be useful in the segmentation because in polar coordinates the behavior of an elliptic structure
is predictable and could possible be used to improve the accuracy of the segmentation.

A benefit of our algorithm is that it is feasible for use in a clinical setting. The algorithm is efficient and the
results can be validated quickly through visual inspection. The goal is to determine the extent of the rim and
the cup for use in determining the cup-to-disc ratio, however a result with only numbers is nonintuitive and does
not facilitate adoption in the community.

6. CONCLUSION

An algorithm has been developed and validated against clinical data capable of segmenting the rim and cup of
the optic nerve head in stereo retinal images. The transformation of the problem into a graph search for two
optimal paths in polar coordinates and the incorporation of smoothness constraints provides a flexible means for
modeling the segmentation of the rim and the cup. Results can be quickly validated through visual inspection
of the segmentation which is important when used in a clinical setting.
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